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LEVER TO THE EDITOR 

Why does the double-Gauss approach perform well in 
slab transport problems? 

K Ganguly 
Institute of Numerical Transport Theory, Department of Mathematics, Texas Tech 
University, Lubbock, TX 79409, USA 

Received 30 July 1992 

Abstract The double-Gauss approach in transport calculations performs well because it 
is a full-range type formulation, 

The traditional discrete-ordinates (S,) method does not perform well for relatively 
high absorption cases when the order of approximation is not too large: The discrepancy 
may be attributed to the use of orthogonal polynomials PN( p) in (-1,l) to evaluate 
Gauss-Legendre quadrature coefficients. This process regularizes the singular eigen- 
function in the transient range according to the classical polynomial theory, which, 
however, does not produce a natural basis for use in transport theory. Intriguingly, 
the double-Gauss method, which uses the Legendre polynomials in the half-range, 
performs very well for slab problems [I]. The reason for this is due to the fact that 
the double-Gauss approach is a full-range type formulation [2] like the FN method. 
We demonstrate this in the following with an example of double S,. The conclusion 
is, however, true for any order of approximation. 

We have observed that any attempt to use basis functions other than the Case 
eigenfunctions or a suitable approximate set of these functions may not always produce 
optimal results. Recently, the singular eigenfunctions have, indeed, been approximated 
by regular rational functions ‘[3]. However, it is useful to be in the framework of 
ordinary differential equations as in the usual spherical harmonics or discrete-ordinates 
method from a computational point of view. An indirect approach [2,4] to solve the 
transient integral problem involving the singular eigenfunction is, therefore, important. 
Siewert’s work on the FN method [2] and then its generalization by Sengupta [5] 
demonstrate the importance of the full-range weight function p to solve the half-range 
transport problem. The FN method was originally derived from the Plackzek lemma, 
.which relates the solution of the half-space problem to an infinite medium problem. 

In the framework of discrete-ordinates, we can derive the full-range formulation 
by choosing the zeros of orthogonal polynomials with respect to p in (0 , l )  followed 
by a reflection of the zeros on the other half (-1,O). This ensures that the entire range 
of the independent variable has been used together with the full-range weight function 
p, with respect to which the complete set of eigenfunctions of the full-range~prohlem 
are orthogonal. The weights in the quadrature formula may then be obtained in a 
Gaussian way. For example, the quadrature coefficients for double-& type formulation 
are obtained from: 

2 
i-l Z w Y = J O ’ ( p ) . p n d p  n =0,1 ,2 ,3  
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i.e. 

w,+w*=f (1) 
w1 PI + W2W2 = f (2) 

w, p:+ wz p: = (3) 

w, p;+ w2pL:=+. (4) 
The solution of (1)-(4) yields p,.,= (6*&)/10 and ~, ,~=(3&+2) /12&.  The direc- 
tion-cosines are zeros of 10pz-12p+3=0, which is orthogonal to p in (0,l). The 
numerical soIution based on these quadrature coefficients is, however, not satisfactory. 
The reason is the following. When we use the quadrature formula 1; f ( p )  d p  = 
X:=., (wj /pJf(pi ) ,  weobtain W,+ W2=0.8888,where W-=w,/p,, i = l , 2 .  Weobserve 
that the formulation does not satisfy the conservation condition 

which is an important property of discrete-ordinates. If we now replace (4) by (5 ) ,  we 
obtain the new set 

w,+w,=1 ( 5 )  

w,+ w,=1 

w, p2 + W2P2 = 4 
w, p:+ w, p: = 4 
w, p: + w, p: =a  

which coincides with the double-Gauss formula based on Legendre polynomial 
orthogonal with respect to unity in (0,l). The direction cosines are zeros of p2- p+i  = 
0, a second-order orthogonal polynomial with respectto unity in (0 , l ) .  This set performs 
remarkably well for ‘sum’ results for all c (number of secondaries per primary), 
including both highly absorbing and scattering cases. For example, the leakage values 
for the constant source problem (source = 1) are 0.5433 and 2.6058 for c = 0.1 and 
c = 0.9 respectively. For the traditional discrete-ordinates S,, these values are 0.5654 
and 2.6401, where as the exact results are 0.5435 and 2.6103. The performance of the 
double-Gauss set is equally satisfactory for the albedo problem. This is explained by 
the fact that the double-Gauss approach is a full-range formulation (like the PN 
method), with the inclusion of the conservation condition. 

However, the eigenvalues of the double-Gauss get worse compared to the traditional 
S,  method. For example, the asymptotic eigenvalues with flux representation of the 
form exp(-x/v) are: v,(double S,) = 2.0765, uo(S4) = 1.9027, vo(exact) = 1.9032 for 
c = 09. This calls for a theory based on the quadrature set, dependent on the medium 
[6]. Further work in this direction is in progress. 

The author gratefully acknowledges fruitful discussions with Professor A Sengupta. 
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